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The application of the quasi-steady-state approximation (QSSA) in bio-

chemical kinetics allows the reduction of a complex biochemical system

with an initial fast transient into a simpler system. The simplified system

yields insights into the behavior of the biochemical reaction, and analyti-

cal approximations can be obtained to determine its kinetic parameters.

However, this process can lead to inaccuracies due to the inappropriate

application of the QSSA. Here we present a number of approximate solu-

tions and determine in which regions of the initial enzyme and substrate

concentration parameter space they are valid. In particular, this illus-

trates that experimentalists must be careful to use the correct approxima-

tion appropriate to the initial conditions within the parameter space.
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Many biochemists may find it hard to believe both that there has been an
explosion of interest in methods for studying enzyme kinetics and in the
importance that biochemical kinetics is acquiring in the postgenomic era,
as these have been part of biochemical research for a century.

A consequence of the development of molecular genetics is the great
increase in studies of mutant and molecular engineering proteins. At first
sight, it does not seem necessary to develop any special methods for studying
kinetic behavior in such cases. However, this view has completely changed
with the increasing study of mutant variants of proteins and enzymes character-
istic of certain diseases or produced by site-directed mutagenesis, because com-
parison of their kinetic properties with those of their normal analogs can lead to
useful conclusions only if performed accurately (Cornish-Bowden 2001).

Although comparisons between the kinetics properties of wild-type and
mutant enzyme samples have long been made in the past, it was difficult
to reach a biological conclusion since the prevailing methodologies for deter-
mining kinetics parameters were not very accurate.

In the nineteenth century, the first scientists studying enzyme kinetics of
the single enzyme-substrate reaction experienced a number of difficulties.
The experimental practice was to follow the reaction over an extended
period of time and to explain observations in terms of the solutions of
second-order rate equations used in chemical kinetics. But then, Brown
(1892, 1902) and a number of other workers found that the rate of
enzyme-catalysed reactions deviated from second-order kinetics. In 1901,
Henri (1901a, 1901b, 1902) proposed the following reversible reaction
scheme between an enzyme E and a substrate S, giving the enzyme-substrate
complex C, which irreversibly yields product P:

S þ EÐ
k�1

k1

C !k2
E þ P ð1Þ

and developed mathematically the model of enzyme action. Here k1, k�1, and
k2 are rate constants. Figure 1 illustrates typical time behavior of ½S�ðtÞ and
½C�ðtÞ in the reaction (1). The difficulty of following the behavior of the enzy-
matic reaction was largely resolved when Michaelis and Menten (1913)
showed that enzymes can be studied by measuring initial rate of product for-
mation under certain conditions. Since then, biochemists usually determine
the enzyme kinetics parameters using an expression for the velocity of prod-
uct formation known as the Michaelis–Menten (MM) equation (Boyde 1980)

v0 ¼ vmax½S0�
KM þ ½S0�

ð2Þ

where vmax is the maximum velocity and KM ¼ ðk�1 þ k2Þ=k1 is the MM con-
stant. For this reason, today the reaction mechanism (1) is conventionally
attributed to Michaelis and Menten (1913) although these authors clearly
recognized Henri as the originator.
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The MM equation has proved to be a simple approach to describe enzyme
processes. Its power resides in the time-independent hyperbolic relation of v0

with ½S0� from which the reaction parameters, KM and vmax, can be deter-
mined. v0 generally follows saturation kinetics with respect to the concentra-
tion of substrate, ½S0�, as shown in Figure 2. At sufficiently low ½S0�, v0

increases linearly with ½S0� following a relation of the form
v0 ¼ ðvmax=KMÞ½S0�. But as ½S0� is incremented v0 increases less rapidly
than ½S0�; until at sufficiently high or saturating ½S0�, v0 reaches a limiting
value vmax.

During the last 70 years, fitting procedures for determining vmax and KM

have been mainly concerned with the development of graphical methods to
estimate reaction constants, such as the double reciprocal linear plot (Haldane
and Stern 1932; Lineweaver and Burk 1934)

1

v0

¼ 1

vmax

1 þ KM

½S0�

� �
ð3Þ

Numerous enzyme kinetics books are dedicated to the important subject of
estimating the kinetics parameters and distinguishing between reaction
mechanisms with the aid of graphical methods (Schulz 1994; Segel 1975;
Dixon and Webb 1979; Cornish-Bowden 1995a; 1995b).

FIGURE 1 Numerical solution of [S](t) (solid curve) and [C](t) (dashed curve) of

the reaction (1) for k1 ¼ 10; k�1 ¼ 1; k2 ¼ 10; ½S0� ¼ 1; ½E0� ¼ 5.
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The application of the MM equation and its linear transformations to
estimate kinetic constants does present several problems (Darvey et al.
1975; Schnell and Mendoza 2000a). Despite their virtues in data visualiza-
tion, diagnostics, and education, such graphical methods of analysis can be
tedious, of relatively poor accuracy, and imply acquired expertise (Chan
1995; Dowd and Riggs 1965; Ritchie and Prvan 1996). From the experimen-
tal point of view, for instance, it is difficult to measure the reaction velocity,
and the information contained in the time evolution is wasted when only the
initial velocities are determined. In addition, the complications of the
approach are unavoidable: every point for fitting the MM equation requires
the timing of a progress curve to estimate the initial velocity (Schnell and
Mendoza 1997, 2001). Recently, the accuracy of the determination of kinetic
parameters, the MM constant, KM, and the maximum velocity, vmax, using the
MM equation has been assessed by Monte Carlo modeling (Ritchie and Prvan
1996). It has been concluded that the MM equation can lead to unsatisfactory
results. KM estimates made using double-reciprocal plots and the MM equa-
tion were consistently inferior to estimates made with nonlinear least-square
fitting methods.

Concerns have been also raised regarding the validity of the kinetics para-
meters obtained using the MM equation and their graphical transformations,

FIGURE 2 Initial velocity plotted against initial substrate concentration for the reac-

tion (1). The dashed curve is v0 ¼ ðvmax=KMÞ½S0�.
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as it seems that these could have been made in numerous experiments under
conditions in which the MM equation is not valid (Segel and Slemrod 1989;
Schnell and Mendoza 1997; Schnell and Maini 2000). Every biochemistry
and enzyme kinetics textbook shows how to derive the MM equation (2)
with the aid of the standard quasi-steady-state approximation (sQSSA) and
therewith the basis methodology for fitting enzyme kinetics data. However,
these texts do not present a clear criterion for the validity of the MM equation
and the sQSSA. This is not surprising, because the majority of the research
literature for the MM reaction (1) concerning integrated equations or analytic
solutions derived from the sQSSA does not contain an analysis of the validity
of the assumption and the solutions (Segel and Slemrod 1989). As a conse-
quence, the velocity equations of the catalytic reaction have been employed
on a number of occasions outside of the conditions for which they are valid
(Schnell and Maini 2000).

In this article, we begin by briefly reviewing how kinetics parameters are
calculated using progress curves and present a new solution recently derived
by one of us (Schnell and Mendoza 1997, 2001). We then carefully consider
the parameter space in which the approximation underlying the derivation of
these progress curves is valid. We show that approximations can be found
that are valid in other areas of parameter space. In particular, we discuss
the importance of using the correct approximation depending on the initial
conditions for fitting the kinetic parameters. We conclude that some of the
errors that have arisen in calculating kinetic parameters may be due to inap-
propriate use of these approximations.

ANALYSIS OF PROGRESS CURVES

In the introduction we mentioned that nowadays biochemists characterize
enzymatic reactions by measuring the rate or velocity of the catalytic reac-
tion. The rate equations are derived by applying the sQSSA to the system
of nonlinear ordinary differential equations (ODEs) set up using the law of
mass action on the reaction (1) (Schnell and Mendoza 1997). This simplifica-
tion and its consequences are generally studied in elementary enzyme
kinetics courses, but in the next section we discuss them further.

Biochemists usually perform experimental measurements of the rate of
enzyme-substrate reactions after a relatively short and fast initial transient
but before the substrate concentration decays appreciably. However, experi-
mental measurements rarely determine rates directly. Rather, substrate or
product concentrations are determined at various times, and rates are calcu-
lated from the change in concentration with time. This process of differentiat-
ing the data is necessarily inexact (Schnell and Mendoza 1997, 2000b).
Furthermore, if the assay method is discontinuous and the change in
concentration is not linear with time, the rate determined may be unreliable
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(Duggleby 2001). This limits the quantitative information that can be
deduced from an enzymatic reaction.

There is an alternative to using the velocity equations to determine the
kinetics parameters and that is to solve the differential equations governing
the biochemical reaction. This involves creating a mathematical description
that is formulated in the same terms as the experimental measurements,
that is, concentrations are written as functions of time (Schnell and
Mendoza 1997).

Apart from resolving the basic problem of the inaccuracy of the velocity
determination, measurements of time courses, or progress curves as they are
often known, have other advantages: (1) A single reaction experimental assay
can yield multiple experimental points, allowing more data to be collected. In
contrast, when velocities are measured it is usual to determine one velocity
from each experimental assay. Using progress curves usually decreases the
number of experimental assays by at least a factor of five (Schnell and
Mendoza 2002). (2) The kinetic data collected from a single experiment
are obtained at exactly the same concentration of all the elements present
in the reaction assay. (3) Low-affinity enzymes are easily studied because
it is possible to measure the reaction over a period during which a substantial
fraction of substrate is used. In contrast, velocity measurements must be
restricted to a timescale where substrate depletion is negligible so that its
concentration is nearly constant and the sQSSA is valid (Duggleby 2001).

Given these advantages, why do the vast majority of enzyme studies con-
tinue to focus on velocities rather than the progress curves? Presently, there
are three main ways to fit progress curves. First, the MM equation (2) is inte-
grated and then rearranged as a linear plot to determine the kinetic param-
eters. This analysis ignores the fact that the variable associated with the
experimental error is a concentration and not the velocity; thus, the linear
transformation distorts the experimental error leading to biased parameter
estimates (Schnell and Mendoza 2001). The second approach is the numerical
integration of the differential equations describing the enzyme reactions, but
in general this is computationally intensive and can result in misleading
conclusions due to the use of root-finding methods during the integration and
a nonlinear least-squares fitting procedure (Duggleby 1995; Schnell and
Mendoza 2000a; Zimmerle and Frieden 1989).

The third approach consists of deriving analytical approximations. This
is the most effective method and analytic progress curves have so far
been derived for various reactions (Duggleby 1995 and references therein).
Schønheyder (1952) and Duggleby and Morrison (1977) derived analytic
progress curves for the single MM reaction with and without product inhibi-
tion. Alberty and Koerber (1957) and Walter (1963) obtained progress curves
for the reversible MM reaction. Darvey and Williams (1964), Boeker (1984),
and Duggleby and Wood (1989) have derived progress curves for enzyme
reactions with alternative substrates. Duggleby (1986) derived analytic prog-
ress curves for enzyme inactivation. Orsi and Tipton (1979) and Szedlacsek
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and collaborators (1990) obtained progress curves for an enzyme reaction in
which a linear inhibitor is present. Tsou (1988), Topham (1990), and Wang
and Zhao (1997) have derived progress curves for enzymatic reactions
affected by modifiers, and Di Cera and collaborators (1996) obtained pro-
gress curves for allosteric reactions. Most of these progress curves have in
common the property that they are implicit algebraic approximations based
on the sQSSA. To obtain the best-fit values for KM and vmax, numerical meth-
ods for root-finding need to be applied (Duggleby 2001).

Recently we have derived a refined version of the MM equation for the
time evolution of the substrate concentration that allows the determination
of the kinetics constants through progress curves (Schnell and Mendoza
1997). This formalism has been extended to deal with other classes of irrever-
sible MM type reactions (Schnell and Mendoza 2001) by solving the kinetics
equations with the aid of the sQSSA. The time evolution of the apparent
reduced substrate concentration ½S00� � ½S�= eKKM,

½S00�ðtÞ ¼ Wf½S00
0 � expð½S00

0 � � ekktÞg ð4Þ

is regulated by the apparent first-order rate constant ekk � evvmax = eKKM. In this
equation eKKM and evvmax are now referred to as the ‘‘apparent’’ MM constant
and maximum velocity, respectively. They are defined as functions of the
activator, inhibitor, or competitor initial concentrations, depending on the
reaction type (Schnell and Mendoza 2001). The W-function is defined as a
solution of the equation

WðxÞ exp½WðxÞ� ¼ x ð5Þ

As recently discussed by Segel and Slemrod (1989), the sQSSA solutions
can be regarded as the term of lowest order in the asymptotic expansion of the
solution of the MM reaction. In this respect, the closed-form solution (4) for
the substrate derived by Schnell and Mendoza (2001) corresponds to the
lowest order term in the outer solution obtained with a singular perturbation
technique. The first-order correction term can also be determined in terms of
this closed-form solution and thus in terms of the W-function. Although the
closed form solutions for the basic enzyme reaction (1) given by Schnell and
Mendoza (1997) are not exact, they have nonetheless been shown to fit
experimental behavior accurately by Goudar et al. (1999) in experiments
with the enzyme pyruvate kinase and prephenate dehydratase. The solution
in terms of the W-function is highly accurate in describing the substrate
depletion and product formation with an accuracy of the order of 10�16

when double-precision arithmetic is used to fit the experimental data
(Goudar et al. 1999). In addition, the range of validity of these solutions
has been studied. It has been found that the solution (4) and those derived
before with the aid of the sQSSA are valid subject to a condition that depends
on the enzymatic reaction (Schnell and Mendoza 1997, 2000a, 2000b). For
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the case of the MM reaction (1), the closed-form solution is accurate for ½E0�=
ðKM þ ½S0�Þ � 1, where ½E0� and ½S0� are, respectively, the initial enzyme and
substrate concentrations.

Therefore, one of the key problems associated with the MM reaction is
deriving analytical approximations with the aid of the sQSSA and identifying
parameter regimes in which various analytical approximations hold, as
these approximations are then used to calculate kinetic parameters from
experimental data.

VALIDITY OF THE QUASI-STEADY-STATE
APPROXIMATION

The actual validity of the sQSSA was first discussed by Laidler (1955),
who suggested through a theoretical analysis an excess substrate concentra-
tion to be a main prerequisite for the validity of the sQSSA. Laidler also
made an early attempt to determine an approximate solution for the pre-
steady-state or initial transient of the reaction. In particular, Laidler found
that the initial substrate concentration has to greatly exceed that of the
enzyme

½E0�
½S0�

� 1 ð6Þ

Bowen and et al. (1963) were the first to examine the sQSSA with the aid
of singular perturbation theory. After reviewing previous efforts to estimate
the error in the sQSSA, they analyzed a number of biochemical reactions,
not including the MM reaction (1). In the analysis of Bowen and coworkers
the timescales and dimensionless variables applied to the sQSSA were intro-
duced without motivation and do not provide a general condition for the
application of the sQSSA.

Using the early analog computers, Hommes (1962), Walter and Morales
(1964), and Walter (1966) mapped the range of validity of the sQSSA for
both the irreversible and reversible MM reactions, showing notable shortcom-
ings for cases with large reverse bimolecular constants (k�1).

Wong (1965) made an attempt to develop a continuous description of the
initial transient and the steady-state phases of the reaction and concluded that
the initial transient must be brief for the sQSSA to be applicable. This can be
obtained by increasing the ½S�=½E� ratio. Stayton and Fromm (1979) found the
sQSSA to generally hold for

½S0�
½E0�

> 100 ð7Þ

by means of simulation modeling on a digital computer.
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Heineken and coworkers (1967) provided a careful discussion of the sin-
gular perturbation treatment of the MM reaction (1), giving references to
early efforts in this direction. Seshadri and Fritzsch (1980, 1981), possibly
unaware of the results of Heineken et al. (1967), studied the more general
situation wherein the reversible nature of the formation of the product was
taken into account. They employed dimensionless variables that differ from
the standard set suggested by Heineken et al. (1967) in that KM is taken as
the scale for the enzyme concentration. This yielded

½E0�
KM

� 1 ð8Þ

as the natural small parameter. As the source of their choice of dimensionless
variables, Seshadri and Fritzsch (1980) cited Reich and Sel’kov (1976), but
the latter authors provided no motivation for their choice. Palsson (1987;
Palsson and Lightfoot 1984) derived ½E0�=KM as the small parameter from
a linear and modal analysis of the MM reaction. de la Selva et al. (1996)
obtained the same small parameter by studying the asymptotic slope at equi-
librium of the rate of product formation versus substrate depletion.

Schauer and Heinrich (1979) gave a detailed analysis of the errors result-
ing from the sQSSA by considering the time-dependent change in the sub-
strate and complex concentration. They proposed three criteria: the
smallness of the relative relaxation deficit, of the relative relaxation time,
and of the relative relaxation error. In Klonowski (1983) there is a general
discussion of timescales and the Russian literature concerning
approximations for chemical kinetics describing the Tihonov theorem
(1952). However, the time scales selected to study the sQSSA are introduced
without motivation.

The importance of scaling in the numerical simulation of chemical reac-
tions was stressed by Dahlquist et al. (Dahlquist 1985; Dahlquist et al.
1982). In particular, they pointed out that scaling gives appropriate weights
in the norm for measuring the local error and makes it possible to write
the systems of equations describing the MM reaction in a partitioned form,
where ½S� and [C] should be interpreted as vectors. In this context, the scaling
of a biochemical system should be carried out in terms of quantities that are
inherent to the process, which usually requires prior knowledge of the solu-
tions by experimentation, physical intuition, or numerical computation. The
book by Lin and Segel (1988) and the review by Segel (1972) provides the
essential points that are necessary for scaling.

More recently, Segel (1988) and Segel and Slemrod (1989) showed that a
more general condition for the sQSSA to be valid is

½E0�
KM þ ½S0�

� 1 ð9Þ
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Note that conditions (6) and (8) are special cases of (9).
In the case of most in vitro assays, condition (9) is satisfied easily for the

basic enzyme reaction (1). It is normally assumed that the formation of the
enzyme-substrate complex C does not diminish significantly the concentra-
tion of the substrate S. Thus, the purpose of assumption (9) is to guarantee
that there is not a significant fraction of the substrate bound to the enzyme
during the assay (Reiner 1969; Schulz 1994; Segel 1975, 1988). According
to Schulz (1994), the presumption is not that the enzyme must be saturated
with substrate; this is a misinterpretation of the assumption, although this
condition does imply that the concentration of the intermediate complex is
in a quasi-steady state (QSS) with regard to the substrate and the product,
due to enzyme saturation (Schnell and Mendoza 1997; Segel 1988; Segel
and Slemrod 1989).

However, the sQSSA condition breaks down in some in vivo conditions
(Albe et al. 1990; Sols and Marco 1970). Intracellular concentrations of
enzyme are usually higher or at least of the same magnitude as their sub-
strates and, consequently, a significant fraction of S can be bound as C com-
plexes. Substrate concentration within cells are in the neighborhood of their
KM values (these values range from about 10�6 to 10�2 M); otherwise the full
potential of the enzyme would not be realized (Cha 1970; Goldstein 1944;
Segel 1975; Srere 1967). Furthermore, it is recognized that high affinity of
an enzyme for a substrate may lead to binding of a significant proportion
of substrate to the enzyme. Under these conditions, the MM equation (2),
its double-reciprocal plot (3), and equation (4) become increasingly invalid
(Cha 1970; Schnell and Mendoza 1997; Segel 1988; Straus and Goldstein
1943). Some expressions have been developed that allow the determination
of the kinetic parameters for high enzyme concentration or high affinity of
an enzyme for a substrate (Dixon 1972; Goldstein 1944; Henderson 1973).
The equation most widely used is the generalized rate equation for the forma-
tion of product derived by Goldstein (1944), Cha and Cha (1965), and Reiner
(1969),

v ¼ k2

2
ðKM þ ½E0� þ ½�SS�Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKM þ ½E0� þ ½�SS�Þ2 � 4½�SS�½E0�

q� �
ð10Þ

where [�SS] is a new variable, the total substrate concentration, given by what is
called the substrate mass balance (Reiner 1969; Schulz 1994; Segel 1975),

½�SS� ¼ ½S� þ ½C� ð11Þ

In spite of these attempts to study enzyme kinetics at high enzyme concentra-
tions, the latter rate equation (10) has been developed in accordance with the
sQSSA for the complex C without examining if the sQSSA holds for this
case. Lim (1973) showed that expression (11) is not the substrate mass
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balance, it is only a definition for the sum of C and S. The correct conserva-
tion law is

½�SS� ¼ ½S� þ ½C� ¼ ½S0� � ½P� ð12Þ

Substituting (12) into (10) leads to (2) (see Lim 1973, p. 660, for details).
Therefore, the general rate equation is equivalent to the MM equation. In
addition, Lim (1973) analyzed the discrepancies between the numerical solu-
tion for [S] and the sQSSA solution. The agreement between the sQSSA solu-
tion and the numerical solution is quite good when ½E0� � 0:01½S0�. However,
when ½E0�=½S0� becomes large the error of the sQSSA solution becomes intol-
erably high. Furthermore, the author illustrates that the error involved is par-
ticularly high during the initial stages of the reaction. These results suggest
that the assumption d½C�=dt � 0 of the sQSSA could be inappropriate at
high enzyme concentration. This clearly illustrates the importance of study-
ing the constraint for the kinetics equations presently employed in the litera-
ture. It also shows that errors in calculations of kinetics parameters may arise
by employing expression (10) in experiments in which the initial enzyme
concentration is higher than the substrate concentration.

In a previous paper (Schnell and Maini 2000), we challenged the basic
assumption d½C�=dt � 0 of the sQSSA with the aid of the reverse QSSA
(rQSSA) when the enzyme reaction (1) occurs under the following condition:

½E0�
½S0�

� 1 ð13Þ

The rQSSA considers the substrate S in a QSS with respect to the enzyme-
substrate complex C by assuming d½S�=dt � 0. From a biophysical point of
view, it seems reasonable to state that the enzyme-substrate complex C is
in a QSS when the concentration of the substrate S is high enough, because
the free enzyme E will immediately combine with another molecule of S.
However, when there is an excess of enzyme E, this condition does not
hold (Borghans et al. 1996; Segel and Slemrod 1989). In the latter case, all
the molecules of substrate S will immediately combine with the molecules
of E. This implies that the substrate will be depleted, and the approximation
d½S�=dt � 0 can be valid for a considerable period of time. Therefore, instead
of C being in a QSS with respect to S, at high enzyme concentration it seems
to be more reasonable to propose that S is in QSS with respect to C.

We have also shown that the velocity expression

v ¼ d½P�
dt

¼ vmax½S�
KS þ ½S� ð14Þ

where KS ¼ k�1=k1 is the equilibrium dissociation constant of the substrate
from the complex is the appropriate kinetics for studying the enzyme reaction
(1) at high enzyme concentration. This comes as a surprise, because the
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velocity equation (14), derived by a number of enzyme kinetics textbooks
(Cornish-Bowden 1995b; Schulz 1994; Segel 1975), is well known but was
considered invalid for high enzyme concentrations. This result has three
important consequences:

1. Enzyme reactions at high enzyme concentration can operate at thermody-
namic equilibrium. Indeed, conditions can be derived to ensure thermody-
namic equilibrium.

2. The commonly stated condition in the literature (Briggs and Haldana
1925; Cornish-Bowden 1995b; Michaelis and Menten 1913; Schulz
1994; Segel 1975) that there is a thermodynamic equilibrium only if
k2 � k�1 is a necessary but not sufficient condition to ensure thermody-
namic equilibrium.

3. For high enzyme concentrations a very simple fitting procedure can now
be used to determine the kinetic parameters KS and vmax without involving
the more complicated methods presently being employed. The latter have
been used with (10) to determine KM and hence information on the reac-
tion constants k1, k�1; and k2. However, the appropriate equation is (14),
so this fitting procedure can only be used to determine information on the
two rate constants k1 and k�1.

In addition, we have obtained a uniformly valid approximation for the
total time evolution (0 < t < 1) of the reactant concentration that can be
employed in progress curve analysis. The time evolution of the substrate
depletion may be approximated by

½S�ðtÞ � ½S0� expð�k1½E0�tÞ ð15Þ

The velocity equation (14) can also be integrated to give ½P�ðtÞ ¼ ½S0�ð1�
exp½�k2t�Þ, and again we can use this for fitting the concentration of product
after the initial transient.

What happens when enzymes operate at around the same concentration as
that of their substrates? A number of biochemists suggest that most enzymes
work on the edge of a catastrophe or chaos in such conditions and the velocity
expression of product formation such as (2) and (14) are no longer valid
(Atkinson 1977; Cornish-Bowden 1999). However, the evidence for this is
not conclusive.

Segel (1988); Segel and Slemrod (1989) and Frenzen and Maini (1988)
have shown that the sQSSA can provide a good approximation even when
½S0� � ½E0� as long as [E0] is small compared to KM. The positive [S0]–[E0]
plane can be divided into regions in which these approximations hold, but in
certain circumstances there remains a region where neither holds.

We illustrate this in Figure 3a, from which we note that in the shaded
region, when both the sQSSA and rQSSA are invalid, the initial enzyme and
substrate concentrations are comparable.
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Borghans et al. (1996) reexamined the problem when there is an excess of
enzyme and KM is small, so that (9) does not hold. In their paper, by changing
variables from free substrate S to total substrate concentration [S̄], they
extend the parameter domain for which it is permissible to employ the clas-
sical assumption d½C�=dt � 0, with the following condition

K½E0�
ðKM þ ½S0� þ ½E0�Þ

2
� 1 ð16Þ

where K ¼ k2=k1 is the Van Slyke–Cullen constant (Schnell and Maini
2000). This new condition is the criterion for the validity of the total
quasi-steady-state approximation (tQSSA). By including the tQSSA in the
plot (see Figure 3b), the positive [S0]–[E0] plane is divided into six regions.
It can be seen that the region in which none of the assumptions are valid is
reduced considerably due to the tQSSA.

Interestingly, the total substrate concentration ([S̄]) is an aggregated vari-
able. The tQSSA is an aggregation method based directly on the restatement

FIGURE 3 (a) Regions of validity of the sQSSA and rQSSA for the enzyme-

substrate reaction (1) plotted using the conditions (9) and (13). There are four regions:

A where only the sQSSA is valid, B where only the rQSSA is valid, C where both

assumptions are valid, and the shaded region where both are invalid. Note that in the

latter region the initial enzyme and substrate concentrations are comparable. (b)

Regions of validity of the sQSSA, rQSSA and tQSSA plotted using the conditions (9),

(13), and (16). The positive [S0]–[E0] plane is now divided into six regions.

The sQSSA, rQSSA, and tQSSA are not valid in the shaded region. In region B0,
the sQSSA and tQSSA are both invalid, but the rQSSA is valid. In region D, only the

tQSSA is valid. The regions A, B, and C are as in (a), but here the tQSSA is also valid.

Parameter values used are k1 ¼ 10; k�1 ¼ 1; k2 ¼ 10 (K¼ 1, KS¼ 0.1, KM¼ 1.1).
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of the chemical mechanism. By changing the substrate variable to the total
substrate (S̄), the mechanism of the reaction is of the form

�SS !k2½E�
P ð17Þ

Aggregation techniques have been used in a number of areas, such as chemis-
try, control theory, economy, and ecology, to reduce systems in the following
way: The differential equations that model the system are transformed to a
lower dimension of pseudo-species, in which the new dependent variables
are functions of the original variables chosen such that the kinetics equations
are easier to solve, and fewer parameters need to be experimentally determined.

We have derived (Schnell and Maini 2002) velocity equations for the sub-
strate depletion and product formation with the aid of the tQSSA and an
aggregation technique for cases where neither the more normally employed
standard nor reverse quasi-steady-state approximations are valid. The veloc-
ity of product formation can be written as

v � vmax½S�
KM þ ½S� þ

KM

k1

v2
max½S�

ðKM þ ½S�Þ4
ð18Þ

Hence, in principle the kinetic parameters can be determined from progress
curves by numerically integrating (18). This type of fitting procedure has
been carried out previously for the MM reaction (1) (Zimmerle and Frieden
1989). In addition, we have found that if the sQSSA is valid, the tQSSA veloc-
ity equation for product formation is almost indistinguishable from the
sQSSA, and if the rQSSA is valid, the tQSSA velocity equation for product
formation is in very close agreement with the rQSSA velocity equation.

The tQSSA velocity equation (18) allows us to enhance the regions in
parameter space for which analytical approximations are valid to fit experi-
mental data. In some cases, the tQSSA provides a good approximation in
regions where either one or other of the sQSSA and the rQSSA (or thermo-
dynamic equilibrium approximation) holds. Therefore, the tQSSA velocity
equation provides a convenient way of assessing the kinetics behavior of
enzymes accurately and is valid in a parameter domain that covers most
of the initial enzyme and substrate concentration parameter space.

CONCLUSION

Presently many biochemists characterize enzymatic reactions by measur-
ing the rate or velocity of the catalytic reaction. Experimental measurements
are carried out after a relatively short and fast initial transient but before the
substrate concentration decays appreciably for the enzymatic reactions. After
the initial transient, if the rate of the substrate depletion or product formation

182 S. Schnell and P. K. Maini



measured is approximately constant, then the enzyme-substrate complex con-
centration [C] is approximately constant. This implies that d[C]=dt� 0. With
this approximation the rate or velocity of the catalytic reaction is determined.

However, many biochemists have devoted their attention to the art of
accurately determining the kinetics parameters by employing the velocity
expression rather than studying the conditions under which the velocity
expression can be used. As a consequence, the velocity equations of the cat-
alytic reaction have been employed on a number of occasions outside of the
conditions for which they are valid.

Furthermore, experimental measurements rarely determine rates directly.
As we have seen in the second section, this process is inexact and limits
the quantitative information that can be deduced from an enzymatic reaction.
There is an alternative to using the velocity equations to determine the
kinetics parameters and that is the analysis of progress curves, which
allows accurate measurements of the kinetic parameters. A review of the lit-
erature shows that previous analyses of progress curves have in common the
property that they are implicit algebraic approximations based on the sQSSA.
To obtain the best-fit values for KM and vmax, numerical methods for root-
finding need to be applied that are computationally intensive and can result
in misleading conclusions (Schnell and Mendoza 2000a).

Schnell and Mendoza 1997 have introduced, with the aid of the sQSSA, a
closed-form solution to describe the time-dependent evolution of the basic
MM reaction. This innovative solution provides a new fitting procedure for
calculating kinetic parameters from progress curves without the need for
employing root-finding methods. The solution has proven (Goudar et al.
1999) to be highly accurate in describing the substrate depletion and product
formation with an accuracy of the order of 10�16 when double-precision
arithmetic is used to fit the experimental data. This solution has been
extended to multiple alternative substrates (Schnell and Mendoza 2000a;
2000b) and enzymatic reactions with modifiers, such as linear inhibitors
and activators (Schnell and Mendoza 2001).

Furthermore, Schnell and Maini (2000, 2002) have extended the solutions
for the basic MM reaction (1) to fit experimental data in a broader parameter
domain in which the sQSSA is not valid. These new solutions challenge the
validity of expressions previously developed that allow the determination of
the kinetic parameters for high enzyme concentration or high affinity of an
enzyme for a substrate. They also raise concerns about the validity of the
kinetic parameters determined with these equations.

The conclusions presented in Schnell and Maini (2000, 2002) suggest that
investigators have to be cautious in interpreting kinetics parameters deter-
mined and the conditions under which these are estimated. This is extremely
important for the postgenomic era that is now beginning. The flood of new
information is highly relevant to enzyme kinetics methods, as it brings
a mass of gene sequences of unknown functions. Understanding genomes
as fast as they are being sequenced will thus require major attention to
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functional genomics. This involves a revival of attention to methods of char-
acterizing enzymes and other proteins kinetically, because kinetics analysis is
an essential step not only in understanding enzyme mechanisms, but also for
understanding better how the kinetic properties of individual enzymes or pro-
teins in a network system combine to produce the kinetic properties of the
biological system under study (Cornish-Bowden 2001).
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